A simple, convenient and direct method for assessing the purity of cobalamins Journal of Inorganic Biochemistry 73 (1999) 215-219 Nicola E. Brasch, Richard G. Finke * Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA Received 4 January 1999; received in revised form 25 January 1999; accepted 5 February 1999 #### **Abstract** A straightforward and simple, but powerful and direct, method is presented for both the detection and quantitation of cobalamin impurities in either commercial cobalamins or in metastable cobalamins (Cbls), such as RSCbls. The method is, quite simply, the use of the aromatic region of the ¹H NMR of cobalamins; it is a method developed as an outgrowth of our work preparing metastable thiolatocobalamins (RSCbls) and is a method that proved necessary for characterizing those (and by inference other) cobalamins unstable to HPLC separation conditions (i.e., and, therefore, where the normally powerful HPLC method so commonly used in cobalamin chemistry fails). Despite considerable, prior, modern multidimensional NMR literature on cobalamins, the present method has not yet been indicated explicitly, nor has anyone reported previously the NMR data required to prove that the method works (i.e., the data for a series of cobalamins and their common impurities proving that they have different chemical shifts in the aromatic region of their ¹H NMR when examined under identical NMR solvent, pH and other conditions). The direct NMR method is easy to perform, readily quantitated and applicable to species unstable to the HPLC conditions required to separate cobalamin impurities. The results have allowed quantitation of the 5–11% impurities in, for example, commercial HOCbl·HX, results which document that some commercially available cobalamins are not as pure as the manufacturers' claims. © 1999 Elsevier Science Inc. All rights reserved. Keywords: Cobalamins; Purity #### 1. Introduction Recently, we synthesized a series of isolable thiolatocobalamins (RSCbls): pentafluorophenylthiolatocobalamin (C₆F₅SCbl), cyclohexylthiolatocobalamin (C₆H₁₁SCbl), cysteinylcobalamin (CysCbl) and glutathionylcobalamin (GluSCbl) [1,2]. However, we experienced unusual difficulties in quantitating the purity of the first three RSCbls, as all three were unstable (decomposing to H₂OCbl⁺) under the HPLC elutant conditions of H₂O/MeOH required to separate RSCbl from its possible H₂OCbl⁺ contaminant (i.e., the starting material for the synthesis). HPLC is the normally powerful, traditional method used by most B₁₂ scientists to determine the purity of cobalamins. However, this method can be used only if the cobalamin and its suspected contaminants are both stable and separable under some set of HPLC conditions. In addition, the impurities must be known and their HPLC behaviour previously examined, since conditions must be chosen where all cobalamin species separate from one another. In some cases, species differing only by a dynamic, prototopic equilibrium such as HOCbl and H_2OCbl^+ are common impurities that are difficult to separate reproducibly from one another, at least under the HPLC conditions that we and others commonly employ [1], and even with close attention to pH control in an attempt to keep the cobalamin all in one form or the other (i.e., HOCbl or H_2OCbl^+) on the HPLC column. A search for alternative methods to identify and quantitate the purity of cobalamins turned up no other well-recognized, generally useful, and powerful method (UV-Vis spectroscopy generally suffers from the problem of overlapping bands). Further consideration of potentially applicable methods leads to NMR as an obvious possible choice, and a scrutiny of the available ¹H NMR data for cobalamins ¹, espe- ^{*} Corresponding author. Fax: +1-970-491-1801; E-mail: rfinke@lamar.colostate.edu ¹ Noteworthy aspects of the NMR work reported in the valuable paper provided elsewhere [4] include: (i) the statement in the Experimental section that "The purity of the B₁₂ derivatives was established by ¹H NMR and ³¹P NMR and by reversed-phase HPLC" (although no further details, nor mention of the use or significance of the aromatic region, were noted); (ii) a focus on the B2, B4, B7 and C10 protons (among others) and their correlations with the *trans* alkyl R group (the B7 signal correlating well cially the aromatic region NMR data, suggested that this region of the NMR might be more useful as a criterion of cobalamin purity (and quantitatively so) than generally recognized [3-9]. The simple, but very useful, finding reported herein is that the aromatic region of the one-dimensional ¹H NMR spectrum of cobalamins, XCbl (X = RS, Me,Ado, CN, HO, H₂O), exhibits distinctive chemical shifts. While we at first thought that the present results might be too obvious for their own short report, reflection revealed that the present communication should prove of use to others as evidenced by: (i) the earlier "B₁₂ prime" controversy² [10-17] that turned out to be due to a cobalamin monocarboxylic acid impurity [16] (i.e., and where the earliest studies [10-15] would have benefited from the use of aromatic region ¹H NMR studies of cobalamins such as those reported herein); and (ii) the detection and quantitation, via the present studies, of impurities in commercial cobalamins beyond the limits claimed by the manufacturers, results which provide the logical next step to improve the purity of several commercial cobalamins. Hence, we have taken time to report the present modest, but we believe useful, studies with the expectation that they may be interesting in particular to three groups: the with the *trans* R group, and with the ³¹P shifts, but the B2 and C10 chemical shifts being "erratic"); and (iii) especially their concluding statement in the NMR subsection of this paper, a statement fully fortified by the findings reported herein, that "In conclusion, some of the NMR resonances appear to be promising handles for evaluating changes in cobalamin structure, but further work is obviously needed". Refs. [30–56] in this paper [4] provide a valuable list of prior correlations of ¹H, ³¹P and ¹³C NMR data obtained for cobalamins. ² A putative "B₁₂ prime" form ("B₁₂") of cyanocobalamin found at ~ 0.08% levels [10] in commercial cyanocobalamin (CNCbl) and initially thought to be an isomeric form of cyanocobalamin [10-15] was subsequently shown to be monocarboxylic acids of cyanocobalamin [16]. Hence, and since HOCbl·HX are most likely prepared commercially from CNCbl (Sigma was unable to supply us with this information), it is possible that the impurity is one of the monocarboxylic acids of CNCbl. However, the aromatic ¹H NMR chemical shifts of the impurities in D_2O ($\delta = 7.24, 6.83$, 6.67, 6.43, 6.19 and 6.07 ppm (present in both HOCbl·HCl and $HOCbl \cdot HOAc$), $pD = 6.1 \pm 0.2$, room temperature, internally referenced to TSP) are clearly different from those of CNCbl-b-monocarboxylic acid $(\delta = 7.28 \text{ (B7)}, 7.10 \text{ (B2)}, 6.54 \text{ (B4)}, 6.37 \text{ (R1)} \text{ and } 6.10 \text{ (C10)} \text{ [17]}; \text{ in}$ D₂O, pH 7.3, room temperature, referenced to TSP) or CNCbl-e-monocarboxylic acid (δ = 7.29 (B7), 7.13 (B2), 6.52 (B4), 6.37 (R1) and 6.10 (C10) [17]; in D₂O, pH 7.3, room temperature, referenced to TSP). It has been claimed that a HOCbl' form of HOCbl can constitute up to 15% of HOCbi stored in a refrigerator for a couple of years [10]. (When asked, Sigma advised us that their current batch of HOCbl · HOAc is about 10 years old.) Since it is also likely that the "HOCbl" form of HOCbl is a mixture of mono-carboxylic acids of HOCbl, the ¹H NMR chemical shifts of our impurity should be compared with these species to see whether the impurity is a mono-carboxylic acid of HOCbl. Unfortunately, the isolation and ¹H NMR of mono-carboxylic acids of HOCbl have not yet been reported in the literature. Sigma informed us that they are also concerned with the purity of their HOCbl·HOAc, and have recently investigated it for possible cyanocobalantin (1–3%) and dicyanocobinamide contaminants ((NC)₂Cbi was not detected; i.e., it is presumably at levels $\leq 1\%$). suppliers of commercial cobalamins, newcomers³ in the vitamin B_{12} field, and perhaps experienced B_{12} researchers who have struggled, as we did [1,2], with the impurities in commercial cobalamins and while determining the purity of RSCbl or other RXCbl cobalamins⁴ that are not amenable to standard HPLC examination. # 2. Experimental The following were all purchased from Sigma: methyl-cobalamin (MeCbl, stated purity by manufacturer, $\sim 99\%$), 5'-deoxyadenosylcobalamin (AdoCbl, stated purity by manufacturer, $\sim 98\%$), cyanocobalamin (CNCbl, stated purity by manufacturer, $\sim 99\%$), the hydrochloride salt of HOCbl (HOCbl·HCl, stated purity by manufacturer, $\geq 98\%$) and the acetate salt of HOCbl (HOCbl·HOAc, stated purity by manufacturer, $\geq 97\%$). C₆F₅SCbl, C₆H₁₁SCbl and GluSCbl were synthesized as reported elsewhere [1,2]. ¹H NMR spectra were recorded in D_2O on either a Varian Mercury-300 or Inova-300 spectrometer operating at room temperature and were referenced internally to 0 ppm with either TMS (CD₃OD) or TSP (D₂O). Anaerobic RSCbl solutions for NMR measurements were prepared in a Vacuum Atmospheres glove box (N₂, ≤2 ppm O₂). #### 3. Results and discussion Fig. 1 gives the aromatic region of the 1H NMR spectrum of $C_6H_{11}SCbl$ in anaerobic CD_3OD . Five well-separated signals are observable at δ =7.17, 6.99, 6.42, 6.21(d) and 6.03 ppm, arising from the B2, B4 and B7 signals of the α -dimethylbenzimidazole ligand, the C10 of the corrin and the R1 of the ribose (Fig. 2). Significantly, small impurity signals are also observable at δ =7.25, 6.88, 6.46 and 5.96 ppm, and integration of the signals at 7.25, 6.88 and 5.96 ppm, against those for the cobalamin, allows quantitation of the cobalamin as \sim 93 \pm 2% pure. Hence, despite the complexity of the 1H NMR spectrum of the cobalamin for δ <5 ppm, the aromatic region of the 1H NMR spectrum of cobalamins is remarkably simple, affording a quick and easy method for determining the percentage of impurities in cobalamins. Table 1 summarizes ¹H NMR aromatic chemical shifts in D₂O for a number of cobalamins. Significantly, no two cobal- ³ We suspect that most experienced researchers in the cobalamin field are well aware, at least qualitatively, of the impurities in commercial cobalamins, although such impurities are little discussed in the open literature. However, we believe that in general most experts do not know: (i) the identity of the cobalamin impurities, (ii) their exact, quantitative percentages, and (iii) the fact that they are readily and quantitatively identified via the aromatic region of their ¹H NMR spectra. ⁴ Specifically, RXCbl where X = other X (besides S), XH, or XR where X is a heteroatom with at least one unshared electron pair so that the RXCbl will therefore be generally much less stable under protic conditions than the better known RCbls. Fig. 1. ¹H NMR spectrum of the aromatic region of $C_6H_{11}SCbl$ (δ =7.17, 6.99, 6.42, 6.21(d) and 6.03 ppm) in anaerobic CD₃OD at room temperature. The results demonstrate the use of the aromatic region of ¹H NMR to access cobalamin purity (integration and comparison of the small impurity peaks at δ =7.25, 6.88 and 5.96 ppm with those for C_6F_5SCbl indicate a 7±2% impurity in the product). Fig. 2. Atom designations for cobalamins. amins examined have exactly the same set of aromatic chemical shifts; hence, the aromatic region of the ¹H NMR of cobalamins is a quick and easy method by which one can identify and quantitate a given cobalamin's purity. The same conclusion can also be drawn from Table 2, data summarizing the ¹H NMR aromatic chemical shifts in CD₃OD for a number of thiolatocobalamins. Table 1 Aromatic 1H NMR chemical shifts for cobalamins in D_2O at 25°C; referenced to TSP | Cobaranini | o (ppin) (assignment) | |---|--| | MeCbl ^a | 7.18 (B7), 6.97(B2), 6.28 (B4), 6.27 (R1), 5.91 (C10) | | AdoCbl b,c | 8.19 (A2), 8.00 (A8) 7.16 (B7), 6.95 (B2), 6.26 (R1), 6.24 (B4), 5.93 (C10) | | CNCbl d | 7.28 (B7), 7.10 (B2), 6.51 (B4), 6.36 (R1), 6.09 (C10) | | N₃Cbl ^d
H₂OCbl ^{+ d} | 7.19 (B7), 6.84 (B2), 6.45 (B4), 6.27 (R1), 6.19 (C10)
7.16 (B7), 6.51 (B2), 6.44 (B4), 6.26 (C10), 6.22 (R1) | | HOCbl ^d
GluSCbl ^e | 7.17 (B7), 6.74 (B2), 6.50 (B4), 6.25 (R1), 6.07 (C10)
7.25 (B7), 6.97 (B2), 6.42 (B4), 6.33 (R1), 6.12 (C10) | | | () () () () () () () () () () | a Ref. [19]. Cobalamin & (nnm) (assignment) Table 2 Aromatic ¹H NMR chemical shifts for thiolatocobalamins in CD₃OD at room temperature; referenced to TMS | Cobalamin | δ(ppm) | |--|---------------------------------| | C ₆ F ₅ SCbl ^a | 7.17, 6.78, 6.42, 6.19(d), 6.04 | | C ₆ H ₁₁ SCbl ^b
GluSCbl ^b | 7.17, 6.99, 6.42, 6.21(d), 6.03 | | | 7.17, 7.01, 6.46, 6.20(d), 6.06 | a See Ref. [1]. b See Ref. [2]. Fig. 3. ¹H NMR spectrum of the aromatic region of commercial HOCbl·HCl at room temperature in D₂O, pD 6.0 ± 0.1 . Signals arising from H₂OCbl⁺ are observable at δ =7.18, 6.53, 6.47, 6.31 and 6.25(d). Impurities at the 5±2% level can be seen at δ =7.94, 7.85, 7.76, 7.25, 7.10, 7.04, 6.83, 6.67, 6.43, 6.19 and 6.07 ppm. Fig. 3 gives the 1H NMR aromatic region of Sigma's HOCbl·HCl in D_2O , pD 6.0 ± 0.1 . Note that D_2O rather than CD₃OD is the preferred solvent, since the simplified spectrum in D_2O , compared to that in CD₃OD⁵, allows ready detection ^b Ref. [20]. ^c A2 and A8 signals from the β-5'-deoxyadenosyl ligand of AdoCbl. ^d Ref. [21]. e Ref. [22]. $^{^5}$ We suspect, as one source of the more complicated spectra in methanol, precedented ion-pairing effects (i.e., in methanol: see the Cl $^-$ -dependent ion-pairing effects in methanol presented in Figs. 2 and 3 elsewhere [18] for a RCo[macrocycle] $^+$ Cl $^-$ B $_{12}$ model complex); there is also the possibility of solvate isomerism such as ClCoCbl versus Cl $^-$ [(CD $_3$ OD)CoCbl] $^+$. The exact speciation of HOCbl $^+$ HCl in methanol has not been investigated further, except to show that the peaks seen in CD $_3$ OD are influenced by added LiCl. Practically speaking, the key result here is that D $_2$ O is the preferred solvent. of the impurities [18]. Signals attributable to H₂OCbl⁺ are observed at $\delta = 7.18, 6.53, 6.47, 6.31$ and 6.25(d) ppm, and are in reasonable agreement with literature values (see Table 1, 5th entry). Signals arising from the impurities are also seen at $\delta = 7.94, 7.85, 7.76, 7.25, 7.10, 7.04, 6.83, 6.67, 6.43, 6.19$ and 6.07 ppm, and the individual ¹H signals integrate as 5 + 2%. Hence HOCbl·HCl from Sigma is, at best, 93–97% pure. The impurity chemical shifts were unchanged by the addition of 0.50 M LiCl (see Section 4), although the chemical shifts of the H₂OCbl⁺ peaks were broadened considerably, indicating that a $H_2OCbl^+ + Cl^- \rightleftharpoons ClCbl + H_2O$ equilibrium probably occurs (somewhat faster than the NMR timescale). This experiment with added LiCl nevertheless demonstrates that none of the impurity peaks are attributable to ClCbl, and also rules out H₂OCbl⁺ to Cl⁻ ion-pairing of any type as responsible for the smaller impurity peaks. Fig. 4 gives the aromatic ¹H NMR region of Sigma's "acetate salt of HOCbl''⁶. The purity of this latter material was of special interest to us, as it was the starting material for our syntheses of C₆F₅SCbl and C₆H₁₁SCbl [1,2]. Once again the major signals at δ = 7.17, 6.52, 6.46, 6.30 and 6.24(d) ppm correspond to H₂OCbl⁺. Prominent impurity signals are seen at $\delta = 7.24$, 6.82, 6.42, 6.38, 6.18 and 6.06 ppm, and individual ¹H NMR signals integrate as 11 + 2% impurity. The spectrum was unaltered by the addition of 0.50 M LiOAc to the solution (see Section 4); hence, the impurity signals cannot be attributed to AcOCbl. The ¹H NMR spectrum of HOCbl · HOAc in CD₃OD has also been measured (spectrum not given), and contaminant signals are now observed at $\delta = 7.25, 6.88, 6.46, 6.24$ and 5.96 ppm in this solvent. Hence, the nearly 7% $\delta = 7.25$, 6.88, 6.46 and 5.96 ppm impurity seen in C₆H₁₁SCbl [2] is carried through from the starting material, which contains the same impurity, but at levels of about 11%. Our initial attempts to isolate and identify the impurity (which is also present in HOCbl·HCl) have so far been unsuccessful; such an identification is necessary before a rational attempt to remove the impurity from the starting material can be made. As noted earlier our guess here is that the impurities may be monocarboxylic acid derivatives of HOCbl·HX, analogous to the monocarboxylic acid derivatives of cyanocobalamin identified by Marzilli et al. [16]. Unfortunately, the monocarboxylic acids of HOCbl·HX have never been isolated and characterized; the present work identifies that task as a goal for future research. Finally, a referee noted that the aromatic region of cobalamin spectra "may also be a useful reporter of cobalamin interactions with enzymes"; we agree. We further note that the the corrin C10 hydrogen aromatic region of the ¹H NMR is likely to be similarly useful for accessing the cobamide impurities in (dimethylbenzimidazole-free) cobinamides, although the key issue of whether the corrin C10 hydrogen Fig. 4. ¹H NMR spectrum of the aromatic region of commercial HOCbl·HOAc at room temperature in D₂O, pD 6.0 ± 0.1 . H₂OCbl⁺ signals are observable at δ =7.17, 6.52, 6.46, 6.30 and 6.24(d). Impurities at the $11\pm2\%$ level can be seen at δ =7.24, 6.82, 6.42, 6.38, 6.18 and 6.06 ppm. chemical shift will always be detectably different for different cobinamides remains to be investigated. ## 4. Supplementary material Data on impurity chemical shifts by addition of 0.50 M LiCl (Fig. A) and 0.50 M LiOAc (Fig. B) are available from the authors. #### Acknowledgements Support was provided by the NIH (Grant DK26214). We thank Sigma Chemical Company for their forthright discussions of the impurities in commercial cobalamins. ### References - [1] T.-L.C. Hsu, N.E. Brasch, R.G. Finke, Inorg. Chem. 37 (1998) 5109– 5116. - [2] N.E. Brasch, T.-L.C. Hsu, K.M. Doll, R.G. Finke, J. Inorg. Biochem., accepted for publication. - [3] K.L. Brown, X. Zou, D.R. Evans, Inorg. Chem. 33 (1994) 5713–5720. - [4] M. Rossi, J.P. Glusker, L. Randaccio, M.F. Summers, P.J. Toscano, L.G. Marzilli, J. Am. Chem. Soc. 107 (1985) 1729–1738. - [5] M.D. Waddington, R.G. Finke, J. Am. Chem. Soc. 115 (1993) 4629– 4640. - [6] B.P. Hay, R.G. Finke, J. Am. Chem. Soc. 109 (1987) 8012-8018. - [7] B.D. Martin, R.G. Finke, J. Am. Chem. Soc. 114 (1992) 585-592. - [8] N.E. Brasch, M.S.A. Hamza, R. van Eldik, Inorg. Chem. 36 (1997) 3216–3222. - [9] N.E. Brasch, F. Müller, A. Zahl, R. van Eldik, Inorg. Chem. 36 (1997) 4891–4894. - [10] M. Katada, S. Tyagi, D.S. Rajoria, A. Nath, in: F.R. Longo (Ed.), Porphyrin Chem. Adv. (Pap. Porphyrin Symp.), Ann Arbor Science Publishers, Ann Arbor, MI, USA, 1979, pp. 157–164. - [11] R.K. Kohli, A. Nath, Inorg. Chim. Acta 136 (1987) 75-79. - [12] P.K. Mishra, R.K. Gupta, P.C. Goswami, P.N. Venkatasubramanian, A. Nath, Biochim. Biophys. Acta 668 (1981) 406-412. - [13] M. Katada, S. Tyagi, A. Nath, R.L. Petersen, R.K. Gupta, Biochim. Biophys. Acta 584 (1979) 149–163. ⁶ Note that, although Sigma calls this compound the ''acetate salt of HOCbl'', rigorously this cannot be so, as a charge balance means it must be the acetate salt of H_2OCbl^+ (i.e., HOCbl·HOAc). - [14] P.K. Mishra, R.K. Gupta, P.C. Goswami, P.N. Venkatasubramanian, A. Nath, Polyhedron 1 (1982) 321–325. - [15] R.K. Kohli, A. Nath, Biochim. Biophys. Res. Commun. 125 (1984) 698-703. - [16] L.G. Marzilli, W.O. Parker Jr., R.K. Kohli, H.L. Carell, J.P. Glusker, Inorg. Chem. 25 (1986) 127–129. - [17] T.G. Pagano, L.G. Marzilli, Biochem. 28 (1989) 7213-7223. - [18] R.G. Finke, W.P. McKenna, D.A. Schiraldi, B.L. Smith, C. Pierpont, J. Am. Chem. Soc. 105 (1983) 7592. Note that this work, as well as - that cited in Ref. [27b] in this 1983 paper, shows that ion-pair interconversion above and below ring systems is often slow on the NMR timescale. - [19] K.L. Brown, D.R. Evans, J.D. Zubkowski, E.J. Valente, Inorg. Chem. 35 (1996) 415. - [20] M.F. Summers, L.G. Marzilli, A. Bax, J. Am. Chem. Soc. 108 (1986) 4285. - [21] A.M. Calafat, L.G. Marzilli, J. Am. Chem. Soc. 115 (1993) 9182. - [22] K.L. Brown, X. Zou, Biochemistry 32 (1993) 8421.